Non-Rainfall Moisture Activates Fungal Decomposition of Surface Litter in the Namib Sand Sea
نویسندگان
چکیده
The hyper-arid western Namib Sand Sea (mean annual rainfall 0-17 mm) is a detritus-based ecosystem in which primary production is driven by large, but infrequent rainfall events. A diverse Namib detritivore community is sustained by minimal moisture inputs from rain and fog. The decomposition of plant material in the Namib Sand Sea (NSS) has long been assumed to be the province of these detritivores, with beetles and termites alone accounting for the majority of litter losses. We have found that a mesophilic Ascomycete community, which responds within minutes to moisture availability, is present on litter of the perennial Namib dune grass Stipagrostis sabulicola. Important fungal traits that allow survival and decomposition in this hyper-arid environment with intense desiccation, temperature and UV radiation stress are darkly-pigmented hyphae, a thermal range that includes the relatively low temperature experienced during fog and dew, and an ability to survive daily thermal and desiccation stress at temperatures as high as 50°C for five hours. While rainfall is very limited in this area, fog and high humidity provide regular periods (≥ 1 hour) of sufficient moisture that can wet substrates and hence allow fungal growth on average every 3 days. Furthermore, these fungi reduce the C/N ratio of the litter by a factor of two and thus detritivores, like the termite Psammotermes allocerus, favor fungal-infected litter parts. Our studies show that despite the hyper-aridity of the NSS, fungi are a key component of energy flow and biogeochemical cycling that should be accounted for in models addressing how the NSS ecosystem will respond to projected climate changes which may alter precipitation, dew and fog regimes.
منابع مشابه
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is al...
متن کاملSoil moisture and soil-litter mixing effects on surface litter decomposition: A controlled environment assessment
Recent studies suggest the long-standing discrepancy between measured and modeled leaf litter decomposition in drylands is, in part, the result of a unique combination of abiotic drivers that include high soil surface temperature and radiant energy levels and soil-litter mixing. Temperature and radiant energy effects on litter decomposition have been widely documented. However, under field cond...
متن کاملThe role of rainfall and light interception by litter on maintenance of surface soil water content in an arid rangeland (Khabr National Park, southeast of Iran)
Abstract The impact of rainfall and light interception by litter on maintenance of surface soil water content is determined in an arid rangeland in Khabr National Park in south-east of Iran. Litter weight sampling is done by 90 square plots, each 1 m2, that are randomly placed within site. After determining the intensity of a typical storm of the region (20 mm/h), the rainfall duration requir...
متن کاملSummer precipitation determinant factors of Iran's South-East
Indian Ocean is known as a source of moisture for southeast of Iran due to summer precipitation. In this study, in order to investigate the role of SST of Indian Ocean, and the convergence and divergence fields in the precipitation of southeast of Iran, precipitation data of five synoptic stations were used during 2000-2010, including Iranshahr, Khash, ChahBahar, Zabul, and Saravan. To investig...
متن کاملDune Widths in Titan’s Belet Sand Sea Reveal Patterns in Dune Formation and Stability
Introduction: Eolian dune fields found within Ti-tan's equatorial region between +30° latitude cover approximately 15-17% of the moon's surface [1]. These dominantly linear dunes are similar in form, size, and radar reflectivity to the large dunes of the Namib, Saharan, Saudi Arabian, and Australian deserts [2][3]. Earth analog studies indicate that the presence of linear dunes suggests adequat...
متن کامل